
Authors:
Leora Courtney-Wolfman
Michael Zehender

Contacts:
leora.courtney@qitasc.com
michael.zehender@qitasc.com

Place, Date:
Vienna/Austria, March 2019
FN 269602z

The Future of Testing
Improving Levels of Automation and Test Coverage

in Telecommunications

mailto:leora.courtney%40qitasc.com?subject=Whitepaper%3A%20The%20Future%20of%20Testing
mailto:michael.zehender%40qitasc.com?subject=Whitepaper%3A%20The%20Future%20of%20Testing
http://www.qitasc.com

The Future of Testing Abstract2

Abstract
Automated testing is an increasingly dominant topic in
telecommunications and QA. Despite test automation‘s increased
prominence, it remains heavily underutilized across all industries.
In terms of telecommunications, this can be partly explained by
the unique set of challenges involved in testing its infrastructure,
which relate to the scale, scope and fragmentation of the industry.
Furthermore, a lack of comprehensive research, terminology and
technical literature about test automation in telecommunications
exacerbates the difficulties in defining and achieving best practices.

In order to bridge the gap between corporate testing needs
and potential automation solutions, this white paper identifies
five challenges that act as barriers to automated testing in
telecommunications:

1. Different test tools for different testing phases

2. Devices, models and OS versions

3. Complicated software with a steep learning curve

4. Proper test coverage, which refers to how much
functionality is actually tested

5. Level of automation, which refers to the amount of
test-related activities that are automated.

The white paper then discusses potential solutions to these challenges,
as outlined in scholarly and technical literature. For each of the five
topics, a brief discussion of intaQt, as well as QiTASC‘s suite of
automation solutions, is included at the end of the section to illustrate
how stakeholders can establish a sustainable test framework. These
examples demonstrate how using a testing framework that ensures
reusability across projects, an incremental approach to automation and
tools that extend automation beyond text case execution itself provide
excellent opportunities for improved levels of test automation and test
coverage.

About QiTASC
QiTASC‘s „key task“ as a

Quality Improving Tools And
Services Company is to provide

you with the technology and
know-how to quickly improve

test coverage in your test
projects and get your products

to the market sooner.

Our test automation product,
intaQt is at the heart of

this mission, and can be
complemented with our suite

of test automation products
to scale up and down as
necessary. QiTASC also

provides managed testing if
you prefer to hand the testing

over to our experts.

The Future of Testing Table of Content3

Table of Contents

4 Introduction

5 The Market for Automated
 Testing in Telecommunications

6 Current Challenges in Test Automation
6 Proper Test Coverage

10 Level of Automation

14 Different Testing Tools for Different Testing Phases

16 Complicated Software with a Steep Learning Curve

20 Managing Devices, Models and OS Versions

24 Discussion

26 Conclusion

27 Co-Author information

28 References

The Future of Testing Introduction4

Introduction
A high premium is placed on quality assurance and testing to ensure mobile networks and
services are defect-free and that customers can enjoy uninterrupted, efficient service—
but at what cost and complexity? A commonly-cited figure suggests that during the
past ten years, testing has consumed an average of 25%-40% of telecommunications
firms’ budgets (Veselov & Vsevolod, 2010; Tuteja & Dubey, 2012; World Quality Report
2015-2016 & 2017-2018). Yet, as companies compete for customers in the face of
shrinking profit margins and tighter deadlines, it is critical that they find ways to reduce
expenditures while maintaining—and improving—the quality of their products and
services. Improving testing efficiency through automation is one of the main keys to
achieve goals such as finding ways to reduce expenditures while maintaining and
improving the quality of their products and services.

Achieving these goals is critical for companies as they compete for customers in the
face of shrinking profit margins. Furthermore, using the same testing tools across all
testing phases is an efficient, cost-effective approach (Pinola et al. 2013). Therefore,
using a testing solution that can be flexibly used in all phases—from development, to
field acceptance and to live environments— and that should be given high priority when
choosing test automation software.

While hundreds of test automation tools exist for mobile application testing, far less exist
for testing telecommunications networks and their infrastructure. Consequently, there are
few resources available to help stakeholders make informed choices about automated
testing. Therefore, this white paper addresses some of those knowledge gaps. In order
to handle constant change and compounding complexities, incrementally automating
QA activities using a single, holistic suite of test software is an achievable goal that in the
long run shifts resources away from repetitive, cost- and time-intensive manual testing
activities, while decreasing time-to-market.

This white paper addresses five challenges facing test automation in the
telecommunications industry: different testing tools and phases, too many devices and
operating systems, complicated software, test coverage and degree of automation.
Within the context of existing research and technical reports, the white paper presents
approaches to mitigate these challenges and additionally demonstrates the role that
QiTASC‘s test automation software plays in achieving effective test projects that produce
market-ready results.

Target Audience
This white paper is directed towards telecommunications decision makers involved in
choosing automated testing solutions, consultants for such decision makers and technical
product managers.

The Market for Automated Testing in
Telecommunications
The telecommunications industry has seen a steady adoption of increasingly sophisticated
automated testing tools over the past 15 years, which can be used at various stages of
the development cycle and for different purposes. Arguably scale, complexity and the
costs associated with telecommunications networks pose some of the largest barriers to
QA testing in this field for both manual and automated testing. However, as available
information is limited regarding test solutions—both in terms of research materials
and online documentation aimed at non-technical experts. This lack of information
is compounded by inconsistent terminology used to describe testing activities and
approaches, making it difficult to search for and find useful resources.

Despite the lack of conclusive information, the general findings from QA and automation
indicate the trends in the industry‘s use of automated testing. The 2017-2018 World
Quality Report (WQR), which is the most comprehensive account of figures and outlooks
for QA and testing, reports a shift towards customer-driven testing, noting that test
scenarios should reflect “consumer usage patterns.” This testing, however, remains largely
manual and the report continues that “automation is currently under-exploited in QA and
testing”, adding that the level of automation across all industries surveyed is only about
16 % (p.8). This percentage refers to testing activities such as test design, execution, data
creation and analysis. The report urges stakeholders to invest in and improve their levels
of automation, as this is the only way to manage the testing scale and coverage required
within a fast-paced, global business environment.

Although concerns exist about human jobs being replaced by computers, automation
appears to benefit both the organizations that adopt it and their employees. Ben-Ner
and Urtasun (2010) state occupations that have been traditionally complex (as opposed
to routine, low-complexity labor) are associated with a greater, more intense „adoption
of computer-based technologies (CBT)“ by employees. They suggest that CBT enables
higher productivity by automating the basic, routine activities found in high-skilled
occupations, while providing employees with more information output as well as more
time and opportunities to interpret this output and expand their technical expertise. In
other words, automation complements a tester‘s responsibilities and skills as they relate to
problem-solving and technical know-how rather than substituting it.

The WQR 2017-2018 finds that a majority of their respondents state that test automation
helps them better detect defects, allows for greater test case reusability and decreases
the length of the test cycle. This leads to improved time-to-market, reduced QA
spending, fewer defects after releases and better test coverage. To better understand the
potential benefits of automated testing, the following sections present some of the key
challenges that telecommunications firms face when confronted with automated testing.

The Future of Testing The Market for Automated Testing in
Telecommunications

5

The Future of Testing Challenge No 1: Proper Test Coverage6

Current Challenges in Test Automation
Improved levels of automation should be a key priority for QA in telecommunications, as
argued for in both recent WQR reports and scientific research. Pinola et al. (2013) state
that, „for software-intensive systems such as modern telecommunication equipment,
software testing is required throughout the development cycle of the product.“
Nevertheless, there is no straightforward, „one-size-fits-all“ approach to the automated
testing of telecommunications infrastructure. In order to better understand how
automated testing supports high-quality telecommunications infrastructure, this white
paper introduces five challenges that interfere with or prevent effective testing.

These challenges are well documented in WQR reports and research articles:

1. Proper test coverage

2. Level of automation

3. Different testing tools for different testing phases

4. Complicated software with a difficult learning curve

5. Too many device models and OS versions

Challenge No. 1

Proper Test Coverage
Test coverage refers to what percent of a product‘s functionality is assessed via a test
project. The importance of test coverage is that it is linked to reliability as well as the
probability of finding errors. Unlike the previously-mentioned challenges such as device
usage and software know-how, test coverage presents fundamental threats to the quality
and findings of all testing activities. Galindo et al. (2016) note „it is difficult for developers,
regardless of development team size or proficiency, to test their software products on all
or even most platform configurations before release“.

Metrics used to assess test coverage include code coverage, which looks at how many
lines of code are covered in test cases, and data-oriented coverage, where databases of
test input (for example, behaviors, actions) and outputs (for example, desired outcomes)
determines the conditions of a test case. Additionally, keyword-driven testing links
keywords to a testable action or function, for example, phone call or download data.

When developing test suites, features, or Feature Files, are commonly used to represent
each unique test case. These features describe sets of behaviors and expected outcomes
for a given product (or groups of products) and may be grouped into a hierarchical, tree-
like model (Galindo et al. 2016). However, as products and their functionality increase

The Future of Testing Current Challenges in Test Automation7

in scope, the potential Feature Files required to maintain a good level of test coverage
appears to grow exponentially, meaning achieving optimal coverage becomes more
complex.

Three types of challenges to test coverage can be identified from the literature:

Practical challenges
Practical challenges, for example, limitations to how much can be
reasonably tested given a specific amount of time and resources. The
WQR 2017-2018 describes a need for high test coverage combined
with time-to-market demands in the high-tech sector. This implies
a need for a growing volume of tests, covering more features, in a
shorter amount of time (Yoo & Harman 2010).

Informational challenges
Informational challenges, for example, limitations to being able
to define optimal test coverage based on employee or industry
knowledge. Although increased test coverage is one of test
automation‘s biggest strengths, the WQR 2017-2018 describes the
„insufficient ability to define the right test coverage and depth“ as a
source of inefficient testing.

Technical challenges
Technical challenges, e.g., technical barriers that restrict what types
of testing activities, including creating test sets, can be done and/or
how. Even with automated testing, it is currently impossible to define
and execute tests for every possible scenario given a complex set of
variables such as configurations, use cases and networks (Galindo et
al. 2016).

Solutions: Test Prioritization and Test Pruning
Although automation helps avoid test scope reduction, some reduction is often required
whether because of time, budget or practical limitations. Morgado and Paiva (2016) stress
that „[u]sually tests can not be exhaustive and, thus, it is necessary to select which tests to
perform or to select a subset of the overall behavior to test“. Two methods that lead to a
manageable number of test cases involve test pruning and test prioritization.

1

2

3

The Future of Testing Challenge No 1: Proper Test Coverage8

Test pruning refers to methods that reduce the size of the entire test suite by eliminating
unnecessary tests, while maintaining appropriate test coverage. On the other hand,
test prioritization orders tests, such that the „most valuable tests [are executed first] to
ensure that critical software components are tested“ (Galindo et al. 2016). Modern test
pruning and test prioritization are typically based upon combinatorial algebra that tests
for combinations of parameters, allowing for the further categorization/grouping of
tests. Following this, further methods may be applied to certain tests, such as merging/
grouping, ordering and/or discarding them.

Galindo et al. (2016) describe an automated test pruning solution that defines the costs
and values of a set of tests, and derives a subset of test cases that should be tested,
as well as a subset of test cases that can be eliminated or „pruned“—either because
the test is not relevant to the test scope, is already covered by another test or is simply
too expensive or resource-intensive. Likewise, Choi et al. (2013) present a technique
that „checks [the] equivalence between two model states“ and prunes by „aggressively
merging“ tests with equivalent states together. This type of pruning can also self-correct
in the event that the merged test cases no longer match. Meanwhile, Fierens et al. (2010)
describe using machine learning where pruning criteria develops a probability tree, and
comment on the implications of over-pruning or under-pruning. Regardless of the pruning
approach, it is best achieved using automated methods because of the volume of data
that must be sorted.

Regarding test prioritization, Srikanth et al. (2005) developed a quantitative tool that
prioritizes according to four criteria, on a scale of 1 to 10:

Figure 1 Test pruning

Initial test suite
Unnecessary tests are

eliminated and valuable
tests are prioritized

Smaller test suite
that maintains test

coverage

The Future of Testing Challenge No 1: Proper Test Coverage9

1. First, „customer-assigned priority“, which refers to the fact that a large
amount of software functions are never or rarely used by the customer,
and therefore should have a lower testing priority than functions that are
frequently used.

2. Second, „requirement volatility“, which measures „how many times a
requirement has been changed during the development cycle“.

3. Third, „development-perceived implementation complexity“ addresses
the complexity of implementing a requirement.

4. Fourth, „fault proneness“ prioritizes features that are known to
experience [frequent] failures. On the other hand, a single criterion may
be used.

Biswas et al. (2011) describe an approach that prioritizes according to test cases with
a „higher fault-detection capability“. They add that this type of prioritization is useful
because it enables the development team to make bug fixes sooner, which is especially
valuable given the pressure for fast times-to-market as well as the uncertainties and
contingencies that may arise during a test project.

Using intaQt to Maximize Test Coverage
intaQt contains several types of features that promote good test coverage. First, intaQt‘s
custom languages enable creating functions and models that can be accessed by all
Feature Files. Thus, a single function that contains shared functionality, such as accessing
a customer database to retrieve customer information and make adjustments to the
account, can be called from multiple Feature Files that also contain different parameters.

Figure 2 Test prioritization

Test
importance

10

9

8

7

6

5

4

3

2

1
Criteria bundles

Highest rate of a
test´s importance

Criteria 1: Customer-assigned priority

Criteria 2: Requirement volatility

Criteria 3: Implementation complexity

Criteria 4: Fault proneness

Test A Test B Test C Test D [...]

The Future of Testing Challenge No 2: Level of Automation10

For example, the first Feature File may involve a subscriber making a phone call while
roaming in a foreign country, and another file may entail the subscriber making a phone
call from their home country.

Second, as described in Different Testing Tools for Different Testing Phases,
intaQt has been developed specifically so that test cases can be reused across different
testing phases. This functionality greatly reduces the need to write different Feature Files
and models to account for changes to the system under test, the hardware being used
and the stage of development. intaQt‘s combination of flexibility and reusability supports
the efficient expansion of test coverage within a project. These same characteristics also
play a strong role in eliminating the need for different testing tools during different testing
phases and, as discussed below, also facilitate improved levels of automation.

Challenge No. 2

Level of Automation
What QA activities should be automated? Which should be reserved — at least
temporarily — for manual testing? Level of automation in this white paper refers to the
share of testing activities that are performed by machines instead of manually by a human.
This includes test case development (for example,, writing tests cases and creating a
project structure), test case execution and test case analysis. At one extreme, a „big
bang approach“ entails going from no automation to complete—or as high a level of
automation as possible—in a single step.

Conversely, an incremental approach integrates certain features or test modules in
multiple phases, typically from a bottom-up or a top-down approach, which takes a
hierarchical view of the software modules or products being tested. Top-down testing
involves testing at the highest level, the main or core module, and branching out
until testing reaches the lowest level. In other words, covers minor feature with few
interdependencies. On the other hand, a bottom-up approach tests the lowest modules
first (Galin, 2004).

The WQR 2018 notes that the big bang approach can lead to disappointing results when
the return on investment does not meet stakeholder expectations (2017 p. 30). One
reason is that this approach makes it difficult to identify sources of failure, since everything
has been integrated into the test scope at once (Galin, 2004; do Como Marchado et al.
2012). Galin (2004) adds that determining the source of errors and correcting them is
an „onerous task“- and costly too. Correcting a fault, within the context of a big bang
approach, requires „consideration of the possible effects of the correction on several
modules at one and the same time.“ This poses uncertainty for budget planning and test-
fix-release scheduling (ibid.).

The Future of Testing Challenge No 2: Level of Automation11

While incremental testing promotes more efficient error detection, greater predictability
and requires fewer resources to correct problems over the course of a test project, it
is more costly at the outset and may require creating many more custom models and
configurations, as well as spending more time preparing and structuring a project.

Solution: A Focused, Incremental Approach
An incremental approach involves gradually automating test activities until a desired
level of automation is reached. This approach is almost always recommended over a big
bang approach: Incremental automation enables better bug detection and correction,
allows users to gradually become familiar with new processes and software and spreads
risk associated with a major change in testing strategy. As the tests themselves become
fully automated, other areas of a project can be automated too, including test case
development, reporting and data analysis. Much of the literature regarding level of
automation focuses primarily on the execution of test cases themselves, with little
attention given to other testing activities such as test creation and data analysis. However,
WQR reports and recent research have noted that greater attention needs to be paid to
the lack of automation during test case creation.

Regarding test execution, The WQR 2018 finds that organizations „introducing
automation in discrete chunks achieve better results than those“ who try to immediately
introduce full automation across an entire company‘s QA workflow. Galin (2004) states
the two main advantages of incremental testing are that, first, having smaller modules
promotes a higher level of error detection. Second, these errors are simpler and less
resource-intensive to correct because they are isolated from the rest of the product being
tested. These benefits stand in contrast to the „relatively low rate of big bang error
identification“ (Galin 2004). Similarly, Thomas (2006) states that in a top-down incremental
approach, „once a level has completed its testing, the tester knows that any problems
that appear in the future are more than likely caused by newly added Units, this decreases
the scope of places to search once Bugs arise“.

In rare circumstances, the big bang approach may be a logical approach. For example,
if testing a „very small and simple“ product, aggregating all quality control efforts into a
single module may be practical and low-risk (Galin 2004; Thomas, 2006). However, Galin
(2004) asserts that „it is generally accepted that incremental testing should be preferred
despite its disadvantages“, while Thomas (2006) adds that the big bang approach should
not be applied to larger programs. Despite the limited use cases for a big bang approach,
a study by Konka (2011) found that a big bang approach in small and simple projects
could lead to future problems: While the approach initially worked, as the project grew in
size and complexity, the test script became more difficult to maintain (p. 21). Therefore,
the limited use cases for big bang testing, its „relatively low rate of error identification“
(Galin, 2004), and the risks this approach poses for future projects makes it unsuitable for
core network testing.

The Future of Testing Challenge No 2: Level of Automation12

When considering what to automate and when, Bartley (n.d.) recommends five
overlapping criteria:

1. Test environment complexity

2. Level of testing

3. How often the test needs to be run

4. Ease of automating the pass/fail criteria

5. Test stability and repeatability

As a test environment become more complex, more work is required to maintain it. For
example, it might be more efficient to manually maintain a test environment if it contains a
large amount of software and hardware prerequisites and interdependent configurations.
Bartley adds that automating infrequently-run tests may not produce a strong return
on investment compared to those that are run much more often. This could be due to
the changes to the test environment that occur between infrequent test runs, software
updates, or the need to manually check or update configurations between test runs.
Regarding pass/fail criteria, greater complexity and maintenance is associated with the
increasing difficulty of predicting a test case‘s outcome. Finally, unstable tests are more
costly and difficult to maintain, canceling out benefits from automating them. Bartley
describes how in some cases, manual tests with the problematic characteristics described
above should be automated later on in a project after the software itself has become
more stable.

For most of the above scenarios, test cases that are not initially suitable for automation
may become easier to automate as a project progresses: As key features and
configurations increase in their stability and become easier to maintain and predict,
newly-integrated or soon-to-be-integrated modules should decrease in their complexity
and uncertainty. This is because many of characteristics or dependencies of the newly-
introduced modules have already been tested, corrected and integrated into the test
environment. Bartley‘s five criteria of what and when to automate highlights the value
of taking an incremental approach to automation, and illustrates the need for carefully
evaluating what should be automated and when.

Combining QiTASC Products to Achieve High Levels of Automation
QiTASC provides a suite of tools that encourage incremental automation—not only in
test execution, but also in device (phone) management, reporting and bug tracking.
While intaQt‘s flexible configurations and reusable modules encourage the incremental
automation of test cases themselves, QiTASC‘s automated reporting service, conQlude,
automates the collection and interpretation of the massive amount of data output
generated by upwards of thousands of test executions per day. conQlude is also
compatible with most project management systems (PMS), which gives users additional

The Future of Testing Challenge No 2: Level of Automation13

To further promote incremental automation, intaQt Studio provides an integrated Git
client, which is a version control tool that tracks changes made to test cases and other
artifacts within a project. This lets users within a project maintain and access changed
files, and even revert back to previous versions if needed. Additionally, intaQt‘s Built-ins
facilitate the automation of external functionality, not normally included within the test
scope, including protocols such as HTTP, SCP and SSH, languages such as SQL and XML,
formats such as CSV and JSON, as well as other important utilities including date and

flexibility with post-hoc data analysis. In terms of device management, QiTASC‘s sQedule
automates phone acquisition, optimizing the availability of phones and matching them
with available test cases. Finally, QiTASC‘s command line interface, intaQt Client, enables
test projects to be executed via continuous integration services such as TeamCity and
Jenkins.

Before testing with QiTASC‘s products, users may consider conducting an exploratory
manual testing phase to ensure product and project know-how on the tester side and to
identify areas that may be difficult to automate or maintain. Next, the test team develops
intaQt test cases that cover a small cross-section of functionality, which allows new users
to become familiar with intaQt as they apply their project know-how to the test. As the
project grows and new features are integrated into the test environment, the level of
automation and test coverage continues to increase.

Figure 3 Improved levels of automation over time

Manual testing:
Basic test automation

Project-driven test
automation

Central configuration
repository

Extensive automatic
testing based on
standard tools.

Manual testing: Test
automation research

90% test automation
coverage.

Continuous
improvement:
Plan-Do-Check-Act

Manual Testing: No
formal asset library

Fragmented
environments

Limited planning

Develop methodology
& processes

Project-based
planning

Shared environments

Some asset retention

Mature processes

Formal assets

Centralized library

Test management

Single-service
catalogue

Central configuration
repository

Federated/centralized
environments

Standard metrics and controls

Step 1:

Initial

Step 2:

Development

Step 3:

Defined

Step 4:

Managed

Step 5:

Optimize

Maturity
Level

Automation
Practice

The Future of Testing Challenge No 3: Different Testing Tools14

time handling, data manipulation and multimedia recognition. For even greater levels
of automation, intaQt Client allows tests projects to be run as builds via the continuous
integration servers TeamCity and Jenkins, leaving the user with more time to analyze
test output and correct errors. Finally, even test analysis activities can be automated via
QiTASC‘s conQlude reporting service, which collects all test metadata from a project‘s
text executions and sorts it into a centralized database for interpretation or further data
manipulation.

Reaching a high level of automation with intaQt along with QiTASC‘s suite of automation
and productivity tools is entirely achievable for telecommunications test projects. intaQt‘s
robust, reusable framework supports an incremental approach to automation by allowing
different modules to be added and expanded upon as a project progresses. intaQt‘s
Built-ins further encourage automation by providing functionality for a wide range of
requirements, including backend systems, data manipulation and different file systems. By
integrating version control tools, continuous integration compatibility with intaQt Client,
the conQlude reporting service and sQedule‘s intelligent resource management, QiTASC
delivers a holistic test solution that helps stakeholders maintain high quality services while
finding and correcting errors faster and reducing the time-to-market.

Challenge No. 3

Different Testing Tools for Different Testing Phases
A lack of unified network testing tools—products or processes that can be used across
development cycles and with different combinations of real and simulated devices—
poses challenges to the efficiency and cost-effectiveness of test automation. Pinola et
al. (2013) note that telecommunication systems require testing through all phases of
the product‘s development. This typically involves using real and simulated devices
in different configurations and at different stages of the testing process, resulting in
multiple test modules to account for the variation in devices. The authors add that this
is a costly problem, because of a lack of flexible testing tools that can re-used across the
development cycle.

Because of this lack of unified tools, testing telecommunications infrastructure may involve
using several applications, each requiring users to develop, configure, write and execute
the same test cases multiple times, while being proficient with each testing application.
Furthermore, test results from different applications may be incommensurate, thus, they
cannot be shared or directly compared with each other, meaning additional steps must be
taken to synchronize results.

The Future of Testing Challenge No 3: Different Testing Tools15

Solution: A Wrap-Around Approach with Compound Steps
and Simulated Devices
A recent approach to network testing involves what has been described as wrap-around
methodology. This means developing a „flexible environment architecture that wraps
around the testing target and can be configured to support different testing needs
throughout the testing life cycle“ (Pinola et al. 2013). A wrap-around approach can be
accomplished with a flexible testing framework that enables a gradual transition from
simulated to real devices. Such frameworks must support the integration of real phones
and external simulators, e.g., those that generate SS7 traffic such as CAP and INAP.
Additionally, the architecture must have its own internal simulators that can recreate the
way a device acts and communicates with external events.

Using intaQt Across Multiple Test Phases
intaQt‘s Compound Steps allow users to access the same type of wrap-around
functionality proposed in the research of Pinola et al. Compound Steps contain multiple
criteria including actions and characteristics about voice calls, SMS transfers and data
downloads. For example, a Voice Call Compound Step includes all events and actions
that occur from when the caller makes a call until the call has ended. intaQt provides
default values for all the criteria, however these values may be explicitly specified within
Compound Steps by using Step Details.

Example Voice Call Compound Step

Feature: MyCall

 Scenario: Compound Call

 Given phones as A and B:

 * of type Android

 And A starts a call to B as MYCALL:

 * detect incoming call within 10 seconds

 * callee does not answer

 * ringing duration is 30 seconds

 * caller ends the call

 And expect the call MYCALL to start ringing

 Then verify !A.isConnected()

 Then verify !B.isConnected()

The Future of Testing Challenge No 4: Complicated Software16

Challenge No. 4

Complicated Software with a Steep Learning Curve
Several interacting information problems impede the understanding of which software to
use, learning new automation software as well as training or hiring employees to execute
automated test projects. Aside from the challenges of learning new software, the WQR
2017-2018 (2017) finds the „lack of specialist in-house knowledge of the depth and range
of automation techniques“ as another factor explaining the low amount of automated
testing across industries.

Test automation is seen as requiring a considerable time investment in order to realize
its benefits. One concern raised by mobile app developers is that automation tools are
complicated to work with and require a lot of time to learn because of poor and limited
documentation as well as a lack of training materials (Kochar et al. 2015). Furthermore,
test automation tools often require the user to have language-specific programming skills
(Zhu et al. 2008). This creates additional challenges and costs, whether by upgrading
existing testers‘ skills, hiring new employees with the expertise to efficiently use the new
software—or both.

To enable testing at different phases, a configuration switch lets the user switch between
real phones and simulated devices, depending on the use case. This eliminates the need
for writing multiple test cases depending on what type of device is used. A potential use
case could look like:

• At the development stage, an entire call flow involves simulated devices.

• During field acceptance, a combination of real and simulated phones is used,
depending on which network components are integrated into the test module.

• In field acceptance, only real phones are used and the simulation switch is
deactivated.

By using these Compound Steps, only one test case is required for each use case:
The same test case can be concurrently executed on the developer‘s machine, in the
production system or at any phase in between. The only difference is whether or not the
configuration switch that tells intaQt to use real or simulated devices is activated.

2

as

ussdthe following

the following

sendsAndWh
en

deferred

within
sends

10

,
And

as

as

„##61#“

CFnAresp

+

8
7 And

*

ensure settings on
with call forwarding

phone B :

no answer to C . number

Android

,B
type

asphones

of*

Given

6

5

3

C

A
1

*

pho
ne

and

4

The Future of Testing Challenge No 4: Complicated Software17

Solution: Leverage Employee Skill Variation
and Knowledge Transfer
Software testing entails multiple levels of expertise and skillsets. The software testing firm
Abstracta describes different career levels of testers (Toledo, 2015), such as:

• Junior/entry-level testers,
who do basic testing activities such as executing
tests and reporting bugs while gaining exposure
to simple test case design and QA issues;

• Mid-level testers,
who have the same responsibilities as a junior
tester, but are more actively involved in designing
test cases and QA activities;

• Senior testers,
who have years of testing experience and often
have specialized knowledge about certain testing
applications and industry-specific issues;

• Test automators/technical testers,
who have programming knowledge that enables them to work
on backend aspects of test case design, performance and
integration with external systems;

• Test managers,
who lead test teams and focus on employee distribution to ensure
that testers are matched with the testing tasks that they are most
suited for.

The benefit of having testers with varied levels of expertise is that it enables efficient
resource allocation and knowledge transfer: Senior testers and those with programming
experience can much more easily abstract a new automation tool, and become proficient
with components requiring, for example, scripting knowledge, industry knowledge
and how the software integrates with the system under test or additional external
components. Likewise, these experienced testers are critical for passing on knowledge
and training more junior employees.

A diversified employee structure also facilitates cost-effective, focused training: For
example, after adopting new testing software or learning about new features, senior
testers and test managers gain in-depth knowledge about the tools and how they relate

The Future of Testing Challenge No 4: Complicated Software18

back to their team‘s projects. While training, such as on-site or classroom-style learning
takes place, junior testing employees can continue working on existing testing activities
while senior employees upgrade their skills. With the newly gained knowledge they have
gained from the training sessions, the senior testers and managers pass on the knowledge
to junior and mid-level team members before returning to their more technically-complex
testing activities.

Finally, as cited earlier, Ben-Ner and Urtasun (2010) found in their own research, as well
as in previous research, that occupations involving complexity, problem solving and
variety have seen positive, complementary professional benefits from automation. Test
automation increases employee efficiency and enables to manage their time more wisely,
allowing them to devote their time to problem solving, analysis and on-the-job learning
(pp. 25-26).

intaQt Studio Productivity Features for Beginners and Experts
Maintaining a test team with a variation in skills and experience promotes the efficient
distribution of activities while also allowing new users to improve their technical skills.
Furthermore, testers with advanced skills can lead their teams while managing more
complex tasks that require scripting knowledge. However, because skill variation on its
own is not enough, intaQt, as well as intaQt Studio, contain an extensive line of Built-ins,
which are features that help speed up the learning process for beginners and experts
alike, while eliminating the need for testers to deal with complicated backend systems
and languages.

intaQt Feature Files use a natural-sounding frontend language, which allows users
without any programming knowledge to gain proficiency in writing, executing and
troubleshooting test cases. Learning intaQt is further facilitated by QiTASC‘s integrated
development environment, intaQt Studio, which contains productivity features including
auto-completion, error inspections and refactoring. These features simplify creating,
adapting and managing test cases, while helping the user work independently and
effectively.

The example below shows a Feature File, where intaQt Studio‘s autocompletion helps the
user write a step that reads a thermometer from a Smart Home mobile app. The Custom
Step label indicates that this step was created by a user using intaQt‘s custom language.

The Future of Testing Challenge No 4: Complicated Software19

For experienced testers with scripting knowledge, intaQt‘s custom UI Steps and Steps
languages enable users to create models and functions that perform use case-specific
activities and can even interact with external hardware/software „behind the scenes“.
Often, users incorporate one of intaQt‘s many Built-ins to enhance the complexity of their
tests: intaQt Built-ins provide out-of-the-box functionality that are available to integrate,
such as database connections, XML matching, programming language-specific content
generation and utility functions. These Built-ins apply to many contexts and enable
writing elaborate test cases that extend beyond intaQt itself. Furthermore, intaQt Built-
ins limit the need to code in multiple applications or learn about different programming
languages, protocols and file formats.

The example below shows the custom Stepdef, or Step Definition accessed by the read
temperature step shown in the Feature File above. In this case, an experienced user
would write the custom script within a Stepdef, which integrates external services into the
test case. The Stepdef uses two of intaQt‘s Built-ins: the File Built-in and the Image Built-
in, which allow intaQt to access a file containing an image of the thermostat, open the
image and examine the temperature reading on the thermostat.

Figure 4 Auto-completion in intaQt Studio

The Future of Testing Challenge No 5:
Managing Devices, Models and OS Versions

20

From the perspective of a junior tester who wrote the read temperature… step in the
Feature File example, their user experience does not change at all: They can write the
read temperature… step into the Feature File without considering what behaviors happen
in the background, while their senior colleague takes care of complex backend activities.

intaQt Studio‘s integrated development environment promote teamwork and knowledge
transfer amongst employees with different levels of expertise. This is done by linking
Feature Files, which are easy for users with no programming experience to master,
to custom Stepdefs that define highly complex test cases and integrate with external
interfaces. Incorporating additional Built-ins into test cases further promotes efficient test
management by including out-of-the-box functionality for multiple interfaces, languages
and protocols so that testers do not need to spend much time dealing with additional
technical challenges.

As a best practice, it is recommended that a knowledgeable intaQt tester should
accompany any test trial run to ensure that common automation mistakes are not made.
Alternately, a customer‘s first project can be created and executed by professionals who
then train others to use intaQt and understand what different test execution outcomes
mean.

Challenge No. 5

Managing Devices, Models and OS Versions
What is the optimal number of devices that must be tested to be confident that a product
works properly? Does that amount stay the same or change over time? Although this
issue has not been prominently discussed within the context of telecommunications
networks, several studies on mobile application testing have attempted to address it.
One case study on mobile application testing describes on in August 2012, nearly 4000
models Android devices, representing 599 brads and multiple operating systems, had
downloaded OpenSignal‘s app (Villas-Boas, 2015). It would be cumbersome to even
attempt to test 10% of these models, whether using a manual or automated approach.

Figure 5 Custom intaQt stepdef implementation

The Future of Testing Current Challenges in Test Automation21

In Galindo et al. (2016), the authors discuss mobile app testing and describe how less
than 25 Android devices are actually „officially certified“ as compatible with Skype, thus
only 25 models have fulfilled test requirements to be considered supported by Skype.
Nevertheless, the application remains popular and is accepted as being compatible with
Android Devices. The authors also add that it would be too costly to acquire and test
every available Android model. Furthermore, the different configurations required for
each model would cause the cost of testing to outweigh potential benefits. In such cases
where many models should be tested, simulated devices are often a solution. However,
each simulated phone model may also require different configurations. As a result, the
costs and efforts relative to the benefits of testing act as a natural limit to the number of
devices that can currently be tested.

In addition to ensuring the appropriate number of models and OS versions, determining
the correct amount of phone units themselves can also pose a problem for testing. For
example, a pool of 100 mobile phones might be available for a project with 2000 test
cases. If there are 20 users executing test cases, each of which require two phones that
are configured to have the same behavior and characteristics, then there will always be a
surplus of 60 phones. Therefore having 100 devices would be a poor use of resources.

On the other hand, if 500 test cases require a phone to be configured so that it behaves
as though it is being used in another country and with randomly selected test cases,
how many phones should be configured to be domestic vs. international? As additional
variables like subscriber characteristics, are added to the test case, or the amount of
phones needed in a test case, allocating phones becomes a greater challenge and the risk
of test failure grows.

Solution - Focus on Network Functionality and Resources, Not the Devices
It is a misconception that aiming to test as many models as possible is critical to testing
telecommunications infrastructure. When the goal is testing network functionality, the
importance is in the network‘s behavior rather than the device models. In other words, the
user is not testing the device: The device is a means to test how the network functions.
In the case of Android phones, their models all behave quite similarly in a network.
Therefore, an emphasis should be placed on ensuring there is a large enough pool of
devices to ensure resource availability when executing multiple test cases.

A whitepaper discussing mobile app testing suggests that using 30 different device
models provides test coverage for about 80% of all potential devices. For example,
having 8-16 Android devices that represent different makes and OS versions along with
4-8 Apple devices (Orasi, 2012). With that suggestion in mind, mobile app testing does
require a greater diversity of models compared to network testing because of app-

The Future of Testing Current Challenges in Test Automation22

specific considerations such as screen size, input types and OS version that all affect the
way a user interacts with an application. On the other hand, these same issues are not
present when testing core networks: Screen size does not affect whether or not a call goes
through.

In this context, the amount of device models required to test telecommunications
infrastructure is subjective. More importantly, projects should have enough devices (or
„units“) to satisfy their resource requirements. Regarding the pool of devices, different
approaches vary to maintain device availability, such as flexible customer configurations,
non-randomized test case assignment and scheduling. However, these are time-
consuming activities that may require a significant amount of labor, such as developing
predictive models.

QiTASC‘s Intelligent Resource Management
QiTASC provides several features that allow users to optimize device availability for test
cases. First, QiTASC‘s sQedule is an intelligent scheduler that evaluates and allocates
phones, allowing for multiple test cases to be run in parallel by sQedule Agents. sQedule
Agents use a special mode of intaQt that requests test cases from the sQedule Server.
A list of all test cases are passed to the sQedule process, and sQedule will always try
to execute as many test cases as possible according to the test cases‘ properties and
available phones. Finally, sQedule is especially useful for managing test cases that are
extremely long or must be run outside of employee working hours.

In addition to sQedule‘s scheduling capabilities, intaQt provides the intaQt Phone
Service, which allows for managing remotely-connected phones, while intaQt Studio
includes a Phone Plugin that shows all available phones -- remote or locally-attached -- for
a given project.

The intaQt Phone Service enables scenarios such as roaming test cases, where the
customer is located outside of their local calling area. Additionally, it means that testers
can access phones that are plugged into machines other than the computer on which
they are running intaQt. Additionally, SIM card management, which may be used in
combination with the intaQt Phone Service, further enables robust phone management.

When a tester uses the Phone Plugin, they can access information about all phones in a
project as well as the phones‘ properties, including hardware information and „customer“
information such as the phone number and other account details. The Phone Plugin
also lets the user view the phone‘s behavior in real time. Furthermore, it allows a user to
interact with a phone from within intaQt Studio and manually perform actions if required,
such as opening applications, selecting dialog boxes and copying/pasting text.

The Future of Testing Challenge No 5:
Managing Devices, Models and OS Versions

23

Example Test Case with intaQt Studio Phone Plugin

Finally, intaQt facilitates the use of virtual phones that can be accessed with a simple
configuration switch. Test cases that do not require real devices, such as tests run during
a project‘s development stage, may use virtual phones, while test cases run in a field
production environment may only use real phones.

QiTASC‘s combination of device management tools ensures that tests are scheduled,
executed, and that resources—real or simulated—are allocated in the most efficient
way possible. Furthermore, sQedule allows projects to use a combination of testers and
sQedule Agents, depending on resource availability, test requirements and test phase.

Figure 6 intaQt Studio Phone Plugin streaming a remote Apptest execution

Discussion
The need for multiple test tools for different activities, combined with practical challenges
to achieving optimal test coverage with a high level of automation, all strongly reflect the
fragmented nature of telecommunications software as well as the differentiation between
its components, features and additional hardware requirements.

Many automated testing solutions are only able to cover certain aspects of testing, such
as simulate some devices or can automating certain actions. A high level of automation
implies not only test execution, but also other activities such as test case development
and results analysis. These activities, too, are limited by testing tools that can only
automate one aspect of a test project, especially when the tools cannot integrate with
other interfaces. As a result, full test coverage is difficult to attain when a single solution
lacks the capabilities to automate all (or most) requirements. At the same time, difficult-
to-learn or cumbersome software and a lack of expert knowledge within test teams create
additional barriers to achieving effective test automation strategies and realizing the
ongoing benefits of automated testing.

Given these interdependent challenges, it is understandable that the WQR 2017-2018
reports low levels of automation across industries, including telecommunications.
However, as testing tools become more sophisticated and industry know-how expands,
it is expected that the use of automation in QA activities will continue to increase. When
investigating test automation solutions, developing a proof of concept with potential
vendors allows customers to identify test requirements and pain points, and additionally
provide an opportunity for exploratory testing activities that may reveal further QA needs
or gaps in knowledge.

At QiTASC, proofs of concept generally lasts for several weeks, involving automating
a small subsection of an anticipated test project. This enables QiTASC to understand
customer‘s needs, their system under test, and additional products that may further
be beneficial towards the project such as the conQlude Reporting Service or sQedule
Intelligent Resource Management.

The Future of Testing Discussion24

intaQt’s comprehensive and customizable capabilities make it extremely well-suited for
testing intelligent networks and core network functionality, as it can cover and automate
most activities and scenarios that would be executed by a real-world mobile customer.
However, as described above, just because something can be automated, it does not
mean that we should switch to automate everything at once. The “big bang” approach
risks creating too much overhead at the beginning of a project. A better approach
involves incrementally increasing test coverage and levels of automation as new modules
are integrated into a project. This encourages users to become confident with software
so that they can independently develop increasingly-complex tests, while sharing
knowledge amongst members of the test team as a project progresses.
At the beginning of a test project, initial test case development, execution and analysis
will inevitably use up a significant amount of time, where troubleshooting and technical
support from QiTASC may be required. However, once a project has passed the stage
of initial exploratory automation, intaQt facilitates the rapid expansion of test coverage
and levels of automation within the context of a sustainable test framework.
First, the intaQt custom languages support reusability, meaning that existing functions
and models can be easily applied to and accessed from any test case within a project.
This is especially useful for projects with a lot of backend integration, e.g., external HTTP,
SSH and/or XML. Second, regarding backend systems, intaQt Built-ins allow users to
integrate such backend integrations into its test suites. This eliminates the need for using
multiple, additional, automation tools. Finally, intaQt‘s configurations, like its custom
languages, are flexible enough that they allow users to instantly switch between technical
requirements, such as simulated or real devices, subscriber properties and security
settings without changing anything in the test case itself.

The Future of Testing Discussion25

Conclusion
With the right combination of technology and project management, QiTASC helps
customers overcome the challenges described in this white paper. By incrementally
increasing levels of test automation via intaQt, test teams increase their technical know-
how, and are able to find and solve errors faster and spend more time focusing on
product development instead of menial QA tasks. Combining intaQt with QiTASC‘s
additional automation products for managing and scheduling devices as well as reporting
enhances levels of automation, test coverage and productivity. While improving high
levels of automation should be a goal for intelligent network testing, certain tasks are
best left to manual testing. These include extremely complex applications or features,
tests that are rarely run and tests that are expected to be unreliable or inconsistent.
Nevertheless, in order to maintain high product quality while ensuring swift times-to-
market, firms have no choice but to increase their use of test automation tools across all
QA activities.

To speak to someone at QiTASC about its suite of
automation tools, or to arrange for a demo, please contact

Can Davutoglu
can.davutoglu@qitasc.com

or Sales Team

To learn more about QiTASC‘s range of test automation
solutions and use cases, please visit our website at

https://www.qitasc.com

sales@qitasc.com

The Future of Testing Conclusion26

mailto:can.davutoglu%40qitasc.com?subject=Let%C2%B4s%20talk%20about%20QiTASC
https://www.qitasc.com
mailto:sales%40qitasc.com?subject=Let%C2%B4s%20talk%20about%20QiTASC
mailto:sales%40qitasc.com?subject=Let%C2%B4s%20talk%20about%20automation

The Future of Testing Author information27

Co-Author information

Leora Courtney-Wolfman
Lead Technical Writer

Leora Courtney-Wolfman has been leading QiTASC’s documentation team
since 2016, where she oversees all documentation workflows including manuals,
tutorials and newsroom content. Prior to joining QiTASC, Leora worked as a
scientific editor.

Leora holds an MSc in economics from the Vienna University of Economics and
Business and a BA from the University of British Columbia.

Michael Zehender
CEO Research & Development

Michael Zehender is a passionate engineer who leads the QiTASC development
team’s efforts to create the best test automation tools available. He focuses
on an integral, holistic approach to test automation that also helps QiTASC’s
customers to maintain a high level of quality and support that they expect and
depend on.

Michael holds a BSc in Computer Sciences from the Technical University of
Vienna.

References
„Android Fragmentation Visualized - OpenSignal“. OpenSignal. August 2012. https://
opensignal.com/reports/fragmentation.php.

Bartley, Mike, PhD. Achieving Business Benefits through Automated Software Testing.
Article https://www.bcs.org/upload/pdf/test-automation-mbartley.pdf.

Ben-Ner, Avner, and Ainhoa Urtasun. „Computerization and skill bifurcation: the role of
task complexity in creating skill gains and losses“. ILR Review 66, no. 1 (2013): 225-267.

Biswas, Swarnendu, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran. „Regression
test selection techniques: A survey“. Informatica 35, no. 3 (2011).

do Carmo Machado, Ivan, Paulo Anselmo da Mota Silveira Neto, and Eduardo Santana
de Almeida. „Towards an integration testing approach for software product lines“. In
Information Reuse and Integration (IRI), 2012 IEEE 13th International Conference on, pp.
616-623. IEEE, 2012.

Fierens, Daan, Jan Ramon, Hendrik Blockeel, and Maurice Bruynooghe. „A comparison of
pruning criteria for probability trees“. Machine Learning 78, no. 1-2 (2010): 251.

Galin, Daniel. Software quality assurance: from theory to implementation. Pearson
Education India, 2004.

Galindo, José A., Hamilton Turner, David Benavides, and Jules White. „Testing variability-
intensive systems using automated analysis: an application to Android“. Software Quality
Journal 24, no. 2 (2016): 365-405.

Gao, Jerry, K. Manjula, P. Roopa, E. Sumalatha, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro
Uehara. „A cloud-based TaaS infrastructure with tools for SaaS validation, performance
and scalability evaluation“. In Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on, pp. 464-471. IEEE, 2012.

Gao, Jerry, Xiaoying Bai, Wei-Tek Tsai, and Tadahiro Uehara. „Mobile application testing:
a tutorial“. Computer 47, no. 2 (2014): 46-55.

Kochar, Pavneet Singh, Ferdian Thung, Nachiappan Nagappan, Thomas Zimmermann,
and David Lo. „Understanding the test automation culture of app developers“.
In Software Testing, Verification and Validation (ICST), 2015 IEEE 8th International
Conference on, pp. 1-10. IEEE, 2015.

Kong, Liang, Hong Zhu, and Bin Zhou. „Automated testing EJB components based on
algebraic specifications“. In null, pp. 717-722. IEEE, 2007.

Konka, Bharat Bhushan. „A case study on Software Testing Methods and Tools“. (2012).

Malaiya, Yashwant K., Michael Naixin Li, James M. Bieman, Rick Karcich, and Bob Skibbe.
„The relationship between test coverage and reliability“. In ISSRE, pp. 186-195. 1994.

Morgado, Inês Coimbra, and Ana CR Paiva. „Impact of execution modes on finding
Android failures“. Procedia Computer Science 83 (2016): 284-291.

The Future of Testing References28

https://opensignal.com/reports/fragmentation.php
https://opensignal.com/reports/fragmentation.php
https://www.bcs.org/upload/pdf/test-automation-mbartley.pdf

„Mobile Application Testing: Rationale and Best Practices for Cloud-Based Automated
Testing“. Orasi. 2012. https://www.orasi.com/wp-content/uploads/2016/08/Orasi_Mobile_
Testing_WP.pdf.

Mobile Application Testing Rationale and Best Practices for Cloud-Based Automated
Testing. 2012. White paper.

Pinola, Jarno, Juho Perälä, Petri Jurmu, Marcos Katz, Seppo Salonen, Jonne Piisilä, Jouko
Sankala, and Pekka Tuuttila. „A systematic and flexible approach for testing future mobile
networks by exploiting a wrap-around testing methodology“. IEEE Communications
Magazine 51, no. 3 (2013): 160-167.

Srikanth, Hema, Laurie Williams, and Jason Osborne. „System test case prioritization
of new and regression test cases“. In Empirical Software Engineering, 2005. 2005
International Symposium on, pp. 10-pp. IEEE, 2005.

Thomas, Gareth. „Object Orientated Integration Testing.“ (2006).

Toledo, Federico. „The Career Path of a Software Tester: An Infographic“. Abstracta
(blog), 2015. Accessed August 16, 2018. https://abstracta.us/blog/software-testing/
career-path-software-tester-infograhic/.

Thomas, Gareth. „Object Orientated Integration Testing“. (2006).

Tuteja, Maneela, and Gaurav Dubey. „A research study on importance of testing and
quality assurance in software development life cycle (SDLC) models.“ International Journal
of Soft Computing and Engineering (IJSCE) 2, no. 3 (2012): 251-257.

Veselov, Alexey, and Vsevolod Kotlyarov. „Testing automation of projects in
telecommunication domain.“ In Proceedings of the Spring/Summer Young Researchers’
Colloquium on Software Engineering, no. 4. Федеральное государственное
бюджетное учреждение науки Институт системного программирования
Российской академии наук, 2010.

Villas-Boas, Andreas. „One of the Biggest Problems with Android Keeps Getting
Worse.“ Business Insider, August 5, 2015. https://www.businessinsider.com/android-
fragmentation-graph-from-opensignal-2015-8?IR=T.

World Quality Report 2015-2016. Report. 2015. https://www.capgemini.com/resources/
world-quality-report-2015-16/.

World Quality Report 2017-2018. Report. 2017. https://www.capgemini.com/resources/
world-quality-report-2017-18/.

Yoo, Shin, and Mark Harman. „Regression testing minimization, selection and
prioritization: a survey“. Software Testing, Verification and Reliability 22, no. 2 (2012): 67-
120.

Zhu, Xiaochun, Bo Zhou, Juefeng Li, and Qiu Gao. „A test automation solution on GUI
functional test“. In Industrial Informatics, 2008. INDIN 2008. 6th IEEE International
Conference on, pp. 1413-1418. IEEE, 2008.

The Future of Testing References29

Visit us at

Diefenbachgasse 53
1150 Vienna / Austria

Get in touch!

Contact us

+43 1 810 21 73
info@qitasc.com

“Quality is never an accident.
It is always the result of intelligent effort.“

(John Ruskin)

mailto:info%40qitasc.com?subject=Let%C2%B4s%20talk%20about%20QiTASC

	Introduction
	The Market for Automated Testing in Telecommunications
	Current Challenges in Test Automation
	Proper Test Coverage
	Level of Automation
	Different Testing Tools for Different Testing Phases
	Complicated Software with a Steep Learning Curve
	Managing Devices, Models and OS Versions

	Discussion
	Conclusion
	Co-Author information
	References

